

Final atomic coordinates and equivalent isotropic temperature factors are given in Table 1.*

Related literature. The results of a study of divalent manganese phosphates are reported in a recent paper (Cudennec, Riou & Gerault, 1986). Several well crystallized phases were prepared, mainly manganese hydrogenphosphates. Little is known about such solid-phase structures. Recently we have published the structural determination of a new manganese phosphate hydrogenphosphate: $Mn_7(PO_4)_2[PO_3(OH)]_4$ (Riou, Cudennec & Gerault, 1987), and refined the structure of synthetic hureaulite of pure manganese: $Mn_5(PO_4)_2[PO_3(OH)]_2 \cdot 4H_2O$ (Gerault,

Riou & Cudennec, 1987). The isomorphism of $Mn[PO_3(OH)] \cdot 3H_2O$ with $Mg[PO_3(OH)] \cdot 3H_2O$ (newberryite) was first established by Durif (1971).

References

ABBONA, F., BOISTELLE, R. & HASER, R. (1979). *Acta Cryst.* **B35**, 2514-2518.
 CROMER, D. T. & WABER, J. T. (1965). *Acta Cryst.* **18**, 104-109.
 CUDENNEC, Y., RIOU, A. & GERAULT, Y. (1986). *C. R. Acad. Sci. Ser. II*, **302**, 1149-1154.
 DURIF, A. (1971). *Bull. Soc. Fr. Minéral. Cristallogr.* **94**, 556-557.
 FRENZ, B. A. (1978). *The Enraf-Nonius CAD-4 SDP - A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution*. In *Computing in Crystallography*, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI, pp. 64-71. Delft Univ. Press.
 GERAULT, Y., RIOU, A. & CUDENNEC, Y. (1987). *Acta Cryst.* **C43**, 1829-1830.
 RIOU, A., CUDENNEC, Y. & GERAULT, Y. (1987). *Acta Cryst.* **C43**, 821-823.
 SUTOR, D. J. (1967). *Acta Cryst.* **23**, 418-422.

Acta Cryst. (1989). **C45**, 1412-1413

Cobalt(II) Orthophosphate Octahydrate

BY A. RIOU, Y. CUDENNEC AND Y. GERAULT

Laboratoire de Chimie des Matériaux Inorganiques et de Cristallographie, Institut National des Sciences Appliquées, 20 avenue des Buttes de Coesmes, 35043 Rennes CEDEX, France

(Received 8 February 1989; accepted 15 March 1989)

Abstract. $Co_3(PO_4)_2 \cdot 8H_2O$, $M_r = 510.86$, monoclinic, $C2/m$, $a = 10.021$ (3), $b = 13.331$ (3), $c = 4.673$ (2) Å, $\beta = 104.90$ (6)°, $V = 603.3$ (0.8) Å³, $D_x = 2.812$ (4), $D_m = 2.78$ (2) Mg m⁻³, $Z = 2$, Mo $K\alpha$, $\lambda = 0.71073$ Å, $\mu = 4.425$ mm⁻¹, $F(000) = 510$, room temperature, $R = 0.018$ for 778 observed reflections. The structure is isotypic with vivianite: $Fe_3(PO_4)_2 \cdot 8H_2O$.

Experimental. Crystals of $Co_3(PO_4)_2 \cdot 8H_2O$ were obtained from a mixture of cobalt carbonate, phosphoric acid and water. After elimination of carbon dioxide, the reacting system belongs to the ternary system $CoO \cdot P_2O_5 \cdot H_2O$. A system composed of 8% CoO , 10% P_2O_5 , 82% H_2O (in weight) was slowly dehydrated at room temperature for several months. Pink rectangular plate-like crystals appeared on the edge of the reactor bottle. A suitable crystal (0.18 × 0.16 × 0.05 mm) was mounted on an Enraf-Nonius CAD-4 diffractometer using Mo $K\alpha$ radiation. Density measured by flotation. The unit-cell constants were determined and refined on the basis of 25 carefully centred reflections in the angular range $2 < 2\theta < 30$ °. Data were collected in the $\omega-2\theta$ scan mode

with ω -scan width (2.00 + 0.50tgθ)° and slit amplitude (1.00 + 0.35tgθ) mm. A total of 1022 reflections were measured. The h, k, l range was $0 \leq h \leq 13$, $0 \leq k \leq 18$, $-6 \leq l \leq 6$ ($2\theta < 56$ °). A periodic check of three standard reflections showed no significant intensity variation. The internal consistency index, R_{int} , was 0.016. Reflections were merged to a unique set of 890. According to $I > \sigma(I)$, 778 reflections were

Table 1. Final atomic coordinates and equivalent isotropic temperature factors for $Co_3(PO_4)_2 \cdot 8H_2O$

	x	y	z	$B_{eq}(\text{Å}^2)$
Co1	0.000	0.000	0.000	0.664 (6)
Co2	0.000	0.38993 (2)	0.000	0.656 (4)
P	0.31424 (5)	0.000	0.3811 (1)	0.546 (8)
O1	0.1573 (1)	0.000	0.3711 (3)	0.84 (2)
O2	0.3935 (2)	0.000	0.7092 (3)	0.78 (2)
O3	0.3444 (1)	0.09648 (8)	0.2282 (2)	0.81 (2)
O4(w)	0.4009 (1)	0.38454 (9)	0.1956 (2)	1.07 (2)
O5(w)	0.1029 (1)	0.2760 (1)	0.2820 (3)	1.36 (2)
H1(O4)	0.380 (3)	0.411 (2)	0.319 (6)	2.0*
H2(O4)	0.348 (4)	0.372 (2)	0.123 (6)	2.0*
H3(O5)	0.116 (4)	0.299 (2)	0.382 (7)	2.0*
H4(O5)	0.058 (3)	0.221 (2)	0.286 (7)	2.0*

* Atoms refined isotropically.

regarded as observed. Data were corrected for Lorentz and polarization effects and absorption corrections were applied. The structural determination was carried out on a PDP 11/60 computer using the *SDP* package (Frenz, 1978). Scattering factors were from Cromer & Waber (1965). The structure was determined on the basis of isomorphism with $Mg_3(PO_4)_2 \cdot 8H_2O$. Refinement was started with atomic coordinates reported by Tagaki, Mathew & Brown (1986). The four H atoms were refined isotropically. Full-matrix least-squares refinement was based on F and the function minimized was $\sum w(|F_o| - |F_c|)^2$, where $w(F) = 1/\sigma^2(F)$. The weighting scheme had a non-Poisson contribution with $p = 0.050$. Corrections were made for anomalous dispersion and secondary-extinction effects ($g = 3.6 \times 10^{-7}$). During the last refinement cycle, the r.m.s. shift/e.s.d. was 0.39. The final difference Fourier map showed no features higher than $0.78 \text{ e } \text{\AA}^{-3}$. In these conditions, the final $R = 0.018$ and $wR = 0.026$. Final atomic coordinates and equivalent isotropic temperature factors are given in Table 1.*

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51834 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Related literature. Little is known about cobalt phosphate hydrates. In a recent study (Cudennec, Lecerf, Riou & Gerault, 1987), we prepared crystals of $Co_3(PO_4)_2 \cdot 8H_2O$. This solid phase belongs to the large vivianite family: $M_3^{II}(XO_4)_2 \cdot 8H_2O$ with $M^{II} = Fe, Co, Ni, Zn, Mg$ and $XO_4 = PO_4, AsO_4$. The structure of vivianite: $Fe_3(PO_4)_2 \cdot 8H_2O$, was proposed by Mori & Ito (1950), without refinement of the atomic coordinates. More recently Hill (1979) has determined the structure of köttigite: $Zn_3(AsO_4)_2 \cdot 8H_2O$, which was refined with the H atoms. Lastly, Tagaki *et al.* (1986) have determined the structure of $Mg_3(PO_4)_2 \cdot 8H_2O$.

References

CROMER, D. T. & WABER, J. T. (1965). *Acta Cryst.* **18**, 104–109.
 CUDENNEC, Y., LECERF, A., RIOU, A. & GERAULT, Y. (1987). *Rev. Chim. Minér.* **24**, 234–247.
 FRENZ, B. A. (1978). *The Enraf–Nonius CAD-4 SDP – A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution*. In *Computing in Crystallography*, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI, pp. 64–71. Delft Univ. Press.
 HILL, R. J. (1979). *Am. Mineral.* **64**, 376–382.
 MORI, H. & ITO, T. (1950). *Acta Cryst.* **3**, 1–6.
 TAGAKI, S., MATHEW, M. & BROWN, W. E. (1986). *Am. Mineral.* **71**, 1229–1233.

Acta Cryst. (1989). **C45**, 1413–1415

Structure of $Cs_3Mo_{15}Se_{17}$

BY. P. GOUGEON, M. POTEL AND M. SERGENT

*Université de Rennes-Beaulieu, Laboratoire de Chimie Minérale B, URA CNRS n° 254,
 Avenue du Général Leclerc, 35042 Rennes CEDEX, France*

(Received 16 April 1989; accepted 11 May 1989)

Abstract. Caesium molybdenum selenide, $Cs_3Mo_{15}Se_{17}$, $M_r = 3180.14$, hexagonal, $P6_3/m$, $a = 9.624(2)$, $c = 20.898(8) \text{ \AA}$, $V = 1676.4(7) \text{ \AA}^3$, $Z = 2$, $D_x = 6.276 \text{ g cm}^{-3}$, $\lambda(Mo K\alpha) = 0.71073 \text{ \AA}$, $\mu = 266.5 \text{ cm}^{-1}$, $F(000) = 2746$, $T = 293 \text{ K}$, $R = 0.028$ for 1028 reflections with $I \geq 2\sigma(I)$ and 58 parameters. The title compound is isostructural with $Rb_3Mo_{15}Se_{17}$ and thus its structure contains as the main building block the $Mo_{15}Se_{17}$ cluster unit whose Mo core is built up by four face-sharing Mo_6 octahedra. Whereas the intracluster Mo–Mo distances as well as the Mo–Se ones are identical to within $\pm 0.01 \text{ \AA}$ in both compounds, owing to the same cationic charge transfer towards the $Mo_{15}Se_{17}$ unit, a slight lengthening of the intercluster Mo–Mo dis-

tance from 3.268 to 3.318 \AA is observed, as expected, when the size of the cation increases.

Experimental. Single crystals were obtained by heating a mixture of $CsMo_3Se_3$ and Mo_3Se_4 (3:2 ratio) in a sealed molybdenum crucible at about 2193 K for one hour and then cooling at 100 K h^{-1} to 1273 K .

Intensities were measured from a crystal fragment with dimensions $0.06 \times 0.10 \times 0.12 \text{ mm}$ on an Enraf–Nonius CAD-4 diffractometer operating with graphite-monochromatized $Mo K\alpha$ radiation. Accurate cell parameters were obtained by a least-squares refinement of the setting angles of 25 reflections with $7 \leq \theta \leq 15^\circ$. 5366 reflections were recorded over the range $1 \leq \theta \leq 35^\circ$ with $h: -15 \rightarrow 0$, $k: 0 \rightarrow 15$, $l: 0 \rightarrow$